Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Cell Infect Microbiol ; 12: 967493, 2022.
Article in English | MEDLINE | ID: covidwho-2029957

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has posed a constant threat to human beings and the world economy for more than two years. Vaccination is the first choice to control and prevent the pandemic. However, an effective SARS-CoV-2 vaccine against the virus infection is still needed. This study designed and prepared four kinds of virus-like particles (VLPs) using an insect expression system. Two constructs encoded wild-type SARS-CoV-2 spike (S) fused with or without H5N1 matrix 1 (M1) (S and SM). The other two constructs contained a codon-optimized spike gene and/or M1 gene (mS and mSM) based on protein expression, stability, and ADE avoidance. The results showed that the VLP-based vaccine could induce high SARS-CoV-2 specific antibodies in mice, including specific IgG, IgG1, and IgG2a. Moreover, the mSM group has the most robust ability to stimulate humoral immunity and cellular immunity than the other VLPs, suggesting the mSM is the best immunogen. Further studies showed that the mSM combined with Al/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges with mouse-adapted strain. The vaccine based on mSM and Al/CpG adjuvant is a promising candidate vaccine to prevent the COVID-19 pandemic.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Viral Vaccines , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Immunoglobulin G , Mice , Mice, Inbred BALB C , Pandemics/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: covidwho-2006040

ABSTRACT

Type III and type I interferon have similar mechanisms of action, and their different receptors lead to different distributions in tissue. On mucosal surfaces, type III interferon exhibits strong antiviral activity. Porcine epidemic diarrhea virus (PEDV) is an economically important enteropathogenic coronavirus, which can cause a high incidence rate and mortality in piglets. Here, we demonstrate that porcine interferon lambda 1 (pIFNL1) and porcine interferon lambda 3 (pIFNL3) can inhibit the proliferation of vesicular stomatitis virus with an enhanced green fluorescent protein (VSV-EGFP) in different cells, and also show strong antiviral activity when PEDV infects Vero cells. Both forms of pIFNLs were shown to be better than porcine interferon alpha (pIFNα), the antiviral activity of pIFNL1 is lower than that of pIFNL3. Therefore, our results provide experimental evidence for the inhibition of PEDV infection by pIFNLs, which may provide a promising treatment for the prevention and treatment of Porcine epidemic diarrhea (PED) in piglets.


Subject(s)
Interferon Type I , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Chlorocebus aethiops , Interferon Type I/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , Vero Cells
3.
Frontiers in cellular and infection microbiology ; 12, 2022.
Article in English | EuropePMC | ID: covidwho-1970342

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has posed a constant threat to human beings and the world economy for more than two years. Vaccination is the first choice to control and prevent the pandemic. However, an effective SARS-CoV-2 vaccine against the virus infection is still needed. This study designed and prepared four kinds of virus-like particles (VLPs) using an insect expression system. Two constructs encoded wild-type SARS-CoV-2 spike (S) fused with or without H5N1 matrix 1 (M1) (S and SM). The other two constructs contained a codon-optimized spike gene and/or M1 gene (mS and mSM) based on protein expression, stability, and ADE avoidance. The results showed that the VLP-based vaccine could induce high SARS-CoV-2 specific antibodies in mice, including specific IgG, IgG1, and IgG2a. Moreover, the mSM group has the most robust ability to stimulate humoral immunity and cellular immunity than the other VLPs, suggesting the mSM is the best immunogen. Further studies showed that the mSM combined with Al/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges with mouse-adapted strain. The vaccine based on mSM and Al/CpG adjuvant is a promising candidate vaccine to prevent the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL